Copied to
clipboard

G = C7×C42.C4order 448 = 26·7

Direct product of C7 and C42.C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×C42.C4, C42.2C28, (C4×C28).5C4, (D4×C14).6C4, (C2×D4).3C28, (C2×C28).19D4, C4.10D45C14, C4.4D4.3C14, C14.36(C23⋊C4), (Q8×C14).155C22, (C2×C4).3(C7×D4), (C2×C4).3(C2×C28), (C2×C28).14(C2×C4), C2.10(C7×C23⋊C4), (C2×Q8).1(C2×C14), (C7×C4.10D4)⋊12C2, (C7×C4.4D4).12C2, C22.14(C7×C22⋊C4), (C2×C14).77(C22⋊C4), SmallGroup(448,159)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C7×C42.C4
C1C2C22C2×C4C2×Q8Q8×C14C7×C4.10D4 — C7×C42.C4
C1C2C22C2×C4 — C7×C42.C4
C1C14C2×C14Q8×C14 — C7×C42.C4

Generators and relations for C7×C42.C4
 G = < a,b,c,d | a7=b4=c4=1, d4=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b2c-1 >

Subgroups: 146 in 64 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C42, C22⋊C4, M4(2), C2×D4, C2×Q8, C28, C2×C14, C2×C14, C4.10D4, C4.4D4, C56, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C42.C4, C4×C28, C7×C22⋊C4, C7×M4(2), D4×C14, Q8×C14, C7×C4.10D4, C7×C4.4D4, C7×C42.C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, C28, C2×C14, C23⋊C4, C2×C28, C7×D4, C42.C4, C7×C22⋊C4, C7×C23⋊C4, C7×C42.C4

Smallest permutation representation of C7×C42.C4
On 112 points
Generators in S112
(1 16 71 81 25 73 17)(2 9 72 82 26 74 18)(3 10 65 83 27 75 19)(4 11 66 84 28 76 20)(5 12 67 85 29 77 21)(6 13 68 86 30 78 22)(7 14 69 87 31 79 23)(8 15 70 88 32 80 24)(33 61 105 49 97 41 89)(34 62 106 50 98 42 90)(35 63 107 51 99 43 91)(36 64 108 52 100 44 92)(37 57 109 53 101 45 93)(38 58 110 54 102 46 94)(39 59 111 55 103 47 95)(40 60 112 56 104 48 96)
(1 5)(2 40 6 36)(4 34 8 38)(9 60 13 64)(11 62 15 58)(12 16)(17 21)(18 96 22 92)(20 90 24 94)(25 29)(26 104 30 100)(28 98 32 102)(35 39)(42 80 46 76)(43 47)(44 74 48 78)(50 88 54 84)(51 55)(52 82 56 86)(59 63)(66 106 70 110)(67 71)(68 108 72 112)(73 77)(81 85)(91 95)(99 103)(107 111)
(1 39 5 35)(2 36 6 40)(3 37 7 33)(4 34 8 38)(9 64 13 60)(10 57 14 61)(11 62 15 58)(12 63 16 59)(17 95 21 91)(18 92 22 96)(19 93 23 89)(20 90 24 94)(25 103 29 99)(26 100 30 104)(27 101 31 97)(28 98 32 102)(41 75 45 79)(42 80 46 76)(43 73 47 77)(44 78 48 74)(49 83 53 87)(50 88 54 84)(51 81 55 85)(52 86 56 82)(65 109 69 105)(66 106 70 110)(67 107 71 111)(68 112 72 108)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,16,71,81,25,73,17)(2,9,72,82,26,74,18)(3,10,65,83,27,75,19)(4,11,66,84,28,76,20)(5,12,67,85,29,77,21)(6,13,68,86,30,78,22)(7,14,69,87,31,79,23)(8,15,70,88,32,80,24)(33,61,105,49,97,41,89)(34,62,106,50,98,42,90)(35,63,107,51,99,43,91)(36,64,108,52,100,44,92)(37,57,109,53,101,45,93)(38,58,110,54,102,46,94)(39,59,111,55,103,47,95)(40,60,112,56,104,48,96), (1,5)(2,40,6,36)(4,34,8,38)(9,60,13,64)(11,62,15,58)(12,16)(17,21)(18,96,22,92)(20,90,24,94)(25,29)(26,104,30,100)(28,98,32,102)(35,39)(42,80,46,76)(43,47)(44,74,48,78)(50,88,54,84)(51,55)(52,82,56,86)(59,63)(66,106,70,110)(67,71)(68,108,72,112)(73,77)(81,85)(91,95)(99,103)(107,111), (1,39,5,35)(2,36,6,40)(3,37,7,33)(4,34,8,38)(9,64,13,60)(10,57,14,61)(11,62,15,58)(12,63,16,59)(17,95,21,91)(18,92,22,96)(19,93,23,89)(20,90,24,94)(25,103,29,99)(26,100,30,104)(27,101,31,97)(28,98,32,102)(41,75,45,79)(42,80,46,76)(43,73,47,77)(44,78,48,74)(49,83,53,87)(50,88,54,84)(51,81,55,85)(52,86,56,82)(65,109,69,105)(66,106,70,110)(67,107,71,111)(68,112,72,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)>;

G:=Group( (1,16,71,81,25,73,17)(2,9,72,82,26,74,18)(3,10,65,83,27,75,19)(4,11,66,84,28,76,20)(5,12,67,85,29,77,21)(6,13,68,86,30,78,22)(7,14,69,87,31,79,23)(8,15,70,88,32,80,24)(33,61,105,49,97,41,89)(34,62,106,50,98,42,90)(35,63,107,51,99,43,91)(36,64,108,52,100,44,92)(37,57,109,53,101,45,93)(38,58,110,54,102,46,94)(39,59,111,55,103,47,95)(40,60,112,56,104,48,96), (1,5)(2,40,6,36)(4,34,8,38)(9,60,13,64)(11,62,15,58)(12,16)(17,21)(18,96,22,92)(20,90,24,94)(25,29)(26,104,30,100)(28,98,32,102)(35,39)(42,80,46,76)(43,47)(44,74,48,78)(50,88,54,84)(51,55)(52,82,56,86)(59,63)(66,106,70,110)(67,71)(68,108,72,112)(73,77)(81,85)(91,95)(99,103)(107,111), (1,39,5,35)(2,36,6,40)(3,37,7,33)(4,34,8,38)(9,64,13,60)(10,57,14,61)(11,62,15,58)(12,63,16,59)(17,95,21,91)(18,92,22,96)(19,93,23,89)(20,90,24,94)(25,103,29,99)(26,100,30,104)(27,101,31,97)(28,98,32,102)(41,75,45,79)(42,80,46,76)(43,73,47,77)(44,78,48,74)(49,83,53,87)(50,88,54,84)(51,81,55,85)(52,86,56,82)(65,109,69,105)(66,106,70,110)(67,107,71,111)(68,112,72,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,16,71,81,25,73,17),(2,9,72,82,26,74,18),(3,10,65,83,27,75,19),(4,11,66,84,28,76,20),(5,12,67,85,29,77,21),(6,13,68,86,30,78,22),(7,14,69,87,31,79,23),(8,15,70,88,32,80,24),(33,61,105,49,97,41,89),(34,62,106,50,98,42,90),(35,63,107,51,99,43,91),(36,64,108,52,100,44,92),(37,57,109,53,101,45,93),(38,58,110,54,102,46,94),(39,59,111,55,103,47,95),(40,60,112,56,104,48,96)], [(1,5),(2,40,6,36),(4,34,8,38),(9,60,13,64),(11,62,15,58),(12,16),(17,21),(18,96,22,92),(20,90,24,94),(25,29),(26,104,30,100),(28,98,32,102),(35,39),(42,80,46,76),(43,47),(44,74,48,78),(50,88,54,84),(51,55),(52,82,56,86),(59,63),(66,106,70,110),(67,71),(68,108,72,112),(73,77),(81,85),(91,95),(99,103),(107,111)], [(1,39,5,35),(2,36,6,40),(3,37,7,33),(4,34,8,38),(9,64,13,60),(10,57,14,61),(11,62,15,58),(12,63,16,59),(17,95,21,91),(18,92,22,96),(19,93,23,89),(20,90,24,94),(25,103,29,99),(26,100,30,104),(27,101,31,97),(28,98,32,102),(41,75,45,79),(42,80,46,76),(43,73,47,77),(44,78,48,74),(49,83,53,87),(50,88,54,84),(51,81,55,85),(52,86,56,82),(65,109,69,105),(66,106,70,110),(67,107,71,111),(68,112,72,108)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)]])

91 conjugacy classes

class 1 2A2B2C4A···4E7A···7F8A8B8C8D14A···14F14G···14L14M···14R28A···28AD56A···56X
order12224···47···7888814···1414···1414···1428···2856···56
size11284···41···188881···12···28···84···48···8

91 irreducible representations

dim1111111111224444
type+++++
imageC1C2C2C4C4C7C14C14C28C28D4C7×D4C23⋊C4C42.C4C7×C23⋊C4C7×C42.C4
kernelC7×C42.C4C7×C4.10D4C7×C4.4D4C4×C28D4×C14C42.C4C4.10D4C4.4D4C42C2×D4C2×C28C2×C4C14C7C2C1
# reps121226126121221212612

Matrix representation of C7×C42.C4 in GL4(𝔽113) generated by

28000
02800
00280
00028
,
112000
1100
70150
1060015
,
15000
989800
00150
1120098
,
9801110
0011
01150
10980
G:=sub<GL(4,GF(113))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[112,1,7,106,0,1,0,0,0,0,15,0,0,0,0,15],[15,98,0,112,0,98,0,0,0,0,15,0,0,0,0,98],[98,0,0,1,0,0,1,0,111,1,15,98,0,1,0,0] >;

C7×C42.C4 in GAP, Magma, Sage, TeX

C_7\times C_4^2.C_4
% in TeX

G:=Group("C7xC4^2.C4");
// GroupNames label

G:=SmallGroup(448,159);
// by ID

G=gap.SmallGroup(448,159);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,3923,3538,248,6871,375,172,14117]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=1,d^4=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽